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Differential Geometry II - Smooth Manifolds
Winter Term 2024 /2025

Lecturer: Dr. N. Tsakanikas
Assistant: L. E. Rosler

Exercise Sheet 4 — Solutions

Exercise 1: Let M, N and P be smooth manifolds, let F': M — N and G: N — P be
smooth maps, and let p € M. Prove the following assertions:

(a) The map dF,: T,M — Tp@)N is R-linear.

(b) d(G o F)p = dGF(p) o dei TpM — T(Gop)(p)P.

(c) d(Idnr)p = Idgpr: T,M — T,M.
)

(d) If F is a diffeomorphism, then dF},: T,M — Ty, N is an isomorphism, and it holds
that (de>_1 = d(F_l)F(p).
Solution:

(a) Let v,w € T,M and A\, u € R. For any f € C*(N), we have

A, (v + ) (f) = (Ao + ) (f o F)
— Ao(f o F) + puw(f o F)
— A, (v)(f) + pdFy(w)(f)
— (AE,(v) + pdFy(w)) (f),

which implies
dF,(Av + pw) = NdF,(v) + pdF,(w).

b) For any v € T,M and any f € C*(P), we have
P

d(GoF)p(U)(f) = U(fo (GOF)) = U((foG) oF)
= dF,(v)(f o G)
= dGr(p) (dF,(v)) (f)
= (dGr) o dF,) (v)(f),

and thus
A(G o F)y(v) = (AGrg) 0 dF) (v),
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which yields the assertion.

(c) For any v € T,M and any f € C*(M), we have

d(Ida),(v)(f) = v(f o IdM) =v(f),

and hence
d(IdM)p(U) =V = IdTpM(U),
which proves the claim.

(d) Since F'is a diffeomorphism, we have
FoF'=Idy and F~'oF =Idy,

so by (b) and (c) we obtain
Idy, v = d(Idy), =d (F~' o F)p =d(F )

and

Idg,,~ = d(1dx)pp) = d (Fo F7Y), = dF,od (F‘l)F(p) .

F(p)
Hence, dF), is an R-linear isomorphism with inverse

(dF,) ' =d (F—l)F(p).

Remark. For those familiar with categorical language, let us put Ezercise 1 into context.
Let Man;° be the category of pointed smooth manifolds, i.e., the category whose objects
are pairs (M, p), where M is a smooth manifold and p € M, and whose morphisms
F: (M,p) — (N,q) are smooth maps F': M — N with F'(p) = gq. Denote by Vectg the
category of R-vector spaces. Parts (a), (b) and (c) of the above exercise show that the
assignment 7': Man° — Vectg, which to a pointed smooth manifold (M, p) assigns the
tangent space T'(M,p) = T,M and which to a smooth map F': (M,p) — (N,q) assigns
the differential T'(F') = dF), of F' at p, is a covariant functor. It is a general fact that
functors send isomorphisms to isomorphisms, and that T(F~!') = T(F)~!, which is why
part (d) of Exercise 1 is a formal consequence of the previous parts.

Exercise 2 (The tangent space to a vector space): Let V be a finite-dimensional R-vector
space with its standard smooth manifold structure, see [Ezercise Sheet 2, Ezxercise 2]. Fix
a point a € V.

(a) For each v € V' define a map

DU} C°(V) — R, fr—>i fla+tv).
a dt],_,

Show that D, u is a derivation at a.

(b) Show that the map
V-1V, v— D, "

is a canonical isomorphism, such that for any linear map L: V — W the following
diagram commutes:



Solution:

(a) Choose a basis Ey,..., E, of V and let ey,...,e, be the standard basis of R"”. Let
¢: R™ — V be the induced isomorphism, which is a diffeomorphism by definition of the
standard smooth structure and by Example 2.14(2). Let @ = ¢ '(a) and ¢ == ¢ !(v).
By Ezercise 1(d) the differential dpz: TzR™ — T,V is an R-linear isomorphism.

As shown in the lecture, the map

~ d
Dg|.: C*(R") — R, f+ g

t=0

is a derivation of C*°(R™) at @. Let us now prove that d@g(ﬁg‘d> = D”|a as functions
from C*°(V) to R, thereby proving that D,,’a is a derivation of C*(V') at a, as dyz (ﬁg‘a)
is so. To this end, let f € C*°(V). Then

f(a+tv) = Dv‘a(f)'

t=0

(Fop)attn) =

_ . d
dea(Ds|;)(f) = D (f o 0) = — dt

dt

t=0
As f was arbitrary, we conclude that dygz <55’a) = Dv|a7 which yields the assertion.

(b) Denote by 1y, the map V= T,V, v — Dv|a. In part (a) we proved that

dpg © Nwr a) (V) = Nv,e@) © (V)

for all @, € R". In other words, we have dypg o ngrna = Nv,e@) © - In particular, since
in Proposition 3.3(b) we already saw that ngn g is an isomorphism, and as dyz and ¢
are isomorphisms as well, we conclude that 7y, ,(a)) is an isomorphism.

It remains to check the above diagram commutes. Firstly, since L is linear, it is
in particular smooth (all first order partial derivatives with respect to some basis exist
and are constant, and all higher order partial derivatives vanish). Now, let v € V' and
f € C®(W) be arbitrary. We have

(dLa o 77(V,a)<v))<f) = dLa (Dv’a) (f) = Dv}a(f © L)
d d
== tzof(L(a +tv)) = pr tzof(La +tlv) = DLU|La(f)
= nw.La) (L) (f) = (Nwiza) © L(0)) (f)-
As v and f were arbitrary, we conclude that

dLq ©Nv,a) = N(w,La) © L;

in other words, the diagram in part (b) is commutative.



Remark. It is important to understand that each isomorphism V' = T,V is canonically
defined, independently of any choice of basis (notwithstanding the fact that we used a
choice of basis to prove that it is an isomorphism). Because of this result, we can routinely
wdentify tangent vectors to a finite-dimensional vector space with elements of the space
itself.

More generally, if M is an open submanifold of an R-vector space V', we can combine
our identifications T,M < T,V <+ V to obtain a canonical identification of each tangent
space to M with V. For example, since GL(n,R) is an open submanifold of the R-vector
space M(n,R), see [Ezxercise Sheet 2, Ezxercise 3], we can identify its tangent space at
each point X € GL(n,R) with the full space of matrices M (n,R).

Remark. For those familiar with categorical language, let us put Ezercise 2 into context.
The category Man;® of pointed smooth manifolds described in the previous remark has
the category Vecty ., of pointed vector spaces as a subcategory (but not as a full subcat-
egory, since only linear maps between pointed vector spaces are considered). Therefore,
the tangent space yields a functor 7': Vectr, — Vecty by restricting to this subcate-
gory. But there is also another natural functor between these two categories, namely the
forgetful functor U: Vectgr . — Vectr which to a pointed vector space (V,a) associates
the underlying vector space V, and to a linear map L: (V,a) — (W,b) (i.e., a linear map
with La = b) associates the linear map L: V' — W. In the preceding exercise, we showed
that 7, is a natural transformation from U to T (by showing that the given diagram
commutes), and in fact that it is a natural isomorphism (by showing that each individual
map 7v,q): U(V,a) = T(V,a) is an isomorphism).

Exercise 3 (The tangent space to a product manifold): Let My, ..., My be smooth man-
ifolds, where k > 2. For each j € {1,...,k}, let

7rj:M1><...><Mk—>Mj

be the projection onto the j-th factor M;. Show that for any point p = (p1,...,px) €
My x ... x My, the map

a: Tp(Ml X ... X Mk) — T, My ®...0T,, M
U= (d(ﬂ-l)p(v)? s ’d(ﬂ-k)p(v))
is an R-linear isomorphism.
Solution: The map « is R-linear; indeed, this follows readily from the fact that ev-
ery component d(m;), is R-linear. Note also that both vector spaces have dimension
>, dim M;. Thus, to show that « is an isomorphism, it suffices to prove that it is surjec-

tive. We will achieve this by constructing a right-inverse to «.
To this end, for each 1 < j < k, define the map

LjIMj—>M1X...XMk
my; = (p17"‘7pj—17mj7pj+17"'7pk>‘

By part (b) of [Ezercise Sheet 3, Exercise 4] we infer that ¢; is smooth, because 7, o ¢; is
either constant or the identity (so in particular smooth) for all 1 < j" < k, with ¢;(p,) = p,
so we obtain a map

d(Lj)pjl ijMj — Tp(Ml X ... X Mk>
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We now define the following map:
B: Ty My @ ... ® T, My, — T,(M; x ... x M)
(1, .y vg) = d(t1)p, (1) + oo+ d(Lk) g, (Vk)-
We will show that 3 is a right-inverse for a.. To this end, let
(vi,...,0) €T, My & ... BT, M.
Then

aofB(vr,. .., ) =« (Z d(e5)p, (Uj)) = a(d), (v)) - (%)
J J
Now, let 1 < 4,5 < k be arbitrary. Note that

d(mi)p (d(1g)p, (v3)) = d(mi 0 1), (v;) = dij0;, ()

because if ¢ # j, then m; o ¢; is constant and thus has 0 differential by Lemma 3.5(a)
(see also [Ezercise Sheet 5, Ezercise 5]), and if i = j, then 7; 0 ; = Idy;, and thus its
differential is the identity by Ezercise 1(c). Thus, by (x) and (x*) we obtain

(o B)(vr,...,v5) = Z((Sljvl, e OpU) = (v, .o, U,
J
and since (vq,...,v;) was arbitrary, we conclude that o f = Id. It follows that « is
surjective, and hence an isomorphism, as explained above.

Remark. Since the isomorphism « in Ezercise 3 is canonically defined, independently of
any choice of coordinates, we can consider it as a canonical identification, and we will
always do so. Thus, for example, we identify T{, 4 (M x N) with T,M @& T, N, and treat
both T, M and T;N as subspaces of T(;, (M x N).

Exercise 4 (Tangent vectors as derivations of the space of germs): Let M be a smooth
manifold and let p be a point of M.

(a) Consider the set S of ordered pairs (U, f), where U is an open subset of M containing
pand f: U — R is a smooth function. Define on S the following relation:

(U, f) ~(V,g) if f =g on some open neighborhood of p.

Show that ~ is an equivalence relation on §. The equivalence class of an ordered pair

(U, f) is denoted by [(U, f)] or simply by [f], and is called the germ of f at p.

(b) The set of all germs of smooth functions at p is denoted by Cp°(M). Show that
C(M) is an R-vector space and an associative R-algebra under the operations

cl(U, f)] = [(U,cf)], where ¢ € R,
(U NI+ V9]l =[UNV, f+9)],
(U, NIV, 9] = [UNV, fg)].
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(c) A derivation of C°(M) is an R-linear map v: C;°(M) — R satisfying the following
product rule:

vlfgly = F(p)olgly + 9(p)olfly-
The set of derivations of C;°(M) is denoted by D, M.

(i) Show that D,M is an R-vector space.
(ii) Show that the map

&: DM — T,M, (v)(f) =v[fl],
is an isomorphism.

Solution:
(a) Straightforward.

(b) Straightforward. Note that the zero element of the R-vector space (or the associative
and commutative R-algebra) C2°(M) is the class [(M, Q)], where

O:M—>R, z2—0

is the constant function with value 0 on M, which is clearly smooth by [Ezercise Sheet 3,
Ezercise 3], and the unit of the R-algebra C3°(M) is the class [(M,I)], where

I.M—R, x—1

is the constant function with value 1 on M, which is smooth again by [Ezercise Sheet 3,
Ezercise 3.

(c) We first prove (i). Clearly, it suffices to show that D,M is a vector subspace of
the vector space of linear maps C3°(M) — R (the dual of C3°(M)). In other words, if
A1, A2 € R and vy, v, € D,M, we have to show that A\;v; + A\gvg satisfies the product rule.
To this end, let [f],, [g], € C;°(M) be arbitrary. Then

(Av1 + Aavg) ([fg]p) = Ay ([fg] ) + )\2712( fg]p)
=M (f(P)uilgly + 9P)vilfly) + X2 (f(p)valgly + 9(p)v2[f1;)
= f(p)(Av1 + )\202 ( 9lp) + 9(p)(Avr + >\202)([f]p)
Hence, A\jv1 + Avy € D, M.

We now prove (ii). First of all, the assertion that ®(v): C*°(M) — R is a derivation
follows from the fact that

[o]p: (M) — C°(M)
=11l
is a homomorphism of R-algebras, and thus if v € D, M is a derivation of C;°(M), then

d(v) = vo[e], is a derivation of C*°(M). Furthermore, ® is R-linear because it is given
by precomposition with [e], (so pointwise addition and scalar multiplication are obviously



preserved). Therefore, it remains to show that @ is an isomorphism. To this end, define
the map

W: T,M — D,M
v (Ifly € C(M) > w()(1f]y) = o(]) €R)

where for [f], € C;°(M) we denote by f € C>(M) some smooth function defined on

all of M such that [f], = [f],, which exists due to the eztension lemma. Note that the

value v(f) is well-defined for [f], thanks to Proposition 3.8. Moreover, one readily checks
that W(v) is indeed a derivation of C7°(M). Now, let us show that ® and ¥ are mutually
inverse. Indeed, given v € T,M and f € C*(M), we have

(o W(v)(f) =T()([fly) = v(f) =v(f),
and thus ® o ¥ = Id; conversely, given v € D,M and [f], € C;°(M), we have

(o @) ([f1p) = 2(0)(f) = v[fl, = v[f;.

and hence ¥ o ® = Id. In conclusion, ® is an isomorphism with inverse W.

Exercise 5: Prove the following assertions:

(a) Tangent vectors as velocity vectors of smooth curves: Let M be a smooth manifold.
If p € M, then for any v € T,M there exists a smooth curve v: (—¢,¢) — M such
that v(0) = p and 7/(0) = v.

(b) The velocity of a composite curve: If F': M — N is a smooth map and if v: J — M
is a smooth curve, then for any ¢y € J, the velocity at t =t of the composite curve
Fo~:J— N is given by

(Fov)'(to) = dF (v (to))-

(¢) Computing the differential using a velocity vector: If F: M — N is a smooth map,
p € M and v € T,M, then
dFy(v) = (F o7)'(0)

for any smooth curve v: J — M such that 0 € J, y(0) = p and +/(0) = v.
Solution:

(a) Let (U, ) be a smooth coordinate chart for M centered at p with components functions

(x',...,2"), and write v = vi% , in terms of the coordinate basis. For sufficiently small

e >0, let v: (—e,e) — U be the curve whose coordinate representation is

v(t) = (toh, ... to"™).

This is a smooth curve with v(0) = p and

Y 0

;0
dt( )8xi

= -
%
» ox

7'(0)

V.

p
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(b) By definition and by Ezercise 1(b) we obtain

d d
tO) = (dFOd’}/) (@

(F'ov)'(to) = d(F o) (—t
=dF (ch (% )) = dF (v (t))-

(c) Follows immediately from (a) and (b).

)




